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Ti:LiNb0
3
 waveguide polarizers werc obtained by an epitaxial growth of a Zn-doped LiNb0

3
 Iayer on

the Ti:LiNb0
3
 waveguide. The film growth was carried out by a liquid-phase-epitaxy technlque using a

Li
2
O-V

2
O

5
 fiux. Such an X-cut waveguide polarlzer achieved a TE-mode (extraordinary ray) propaga-

tion wlth an extinction ratio over 30 dB at a light wavelength of 1.55 µm. This technique can be easily
applied to Z- and Y-cut waveguide polarizers with TM- and TE-mode propagation, respectively.
 © 2000 American Institute of Physics. [SO003-6951(00)021 12-4]

LiNb0
3
 (LN) is a promising material for optoelectronic

devices, and several methods have been attempted to fabri-
cate optical waveguides on this material. For instance, a ther-
mal diffusion of Ti metal is used to obtain a low propagation
loss waveguide. In the Ti-indiffused area, both the ordinary
and the extraordinary refractive indices increased slightly,
providlng the optical waveguide for both TE- and TM-mode
propagation. Therefore, for a device application using a spe-
cific electro-optic constant of the LN crystal, an optical po-
larizer must be installed in the waveguide.

Previously, several methods were proposed to realize the
LN waveguide polarizer, such as a metal cladding surface layer,1

a proton-exchange waveguide,2 and an additional Ti-indiffusion
on both sides~ of the waveguide.3 However, the previous meth-
ods had the following problems. For waveguides with the metal
cladding layer, it was difficult to achieve a sufficiently high
extinction ratio without an excess loss in the propagating light.
Further, the propagation mode was restricted by the orienta-
tion of the LN wafers. The proton-exchange waveguides van-
ish easily during the succeeding thermal process, such as depo-
sition and annealing of the SiO

2 
 buffer layer at the tempera-

ture range from 500 to 650 ℃. Although the additional Ti-
indiffusion on both sides of the waveguide provided an excel-
lent structure to obtain a higher extinction ratio without an
excess loss, the optimum design for the additional Ti-
indiffusion might change largely depending™ on the optical
properties of the waveguides.

 Here, in order to achieve the waveguide polarizer with-
out an excess propagation loss, a structure using an anisotropy
of the LN crystal, as schematically shown in Fig.1 , was con-
sidered. This structure consisted of the Ti-indiffused waveguide
and the dielectric film over the waveguide. As an example of
the die]ectric film, Murakami, Masuda, and Koyama reported
the sputtering-deposited Nb

2
O

5
 film, in which the refractive-

index value was adjusted by changing O
2
 pressure of the sput-

tering gas.4 Such LN waveguide po-larizers leaked an extraor-
dinary ray and propagated an ordinary ray, because the ex-

traordinary refractive index of the waveguide was smaller than
the refractive index of the Nb

2
O

5
 film. However, because the

electro-optic coefficient of the LN crystal for the ordinary ray
is only one third of that for the extraordinary ray, the waveguide
polarizer with the Nb

2
O

5
 film was not suitable for the opto-

electronic devices. For realization of the extraordinary ray-pass
waveguide po-larizer, a large anisotropy in the refractive in-
dexes Is neces-sary, i.e., n

l
<2.2 and n

2
>2.29 in Fig. 1, Recently,

Terashima and Ito reported a decrease of the extraordinary re-
fractive index (n

e
) and an increase of the ordinary refrac-tive

index (n
o
) for LN by doping with Zn0.5 This Zn-doped LN

was suitable as the dielectric layer for the extraordinary ray-
pass waveguide polarizer, and we attempted here to form the
epitaxially grown Zn-doped LN Iayer on the Ti:LN waveguide.

 The fabrication process of the waveguide polarizer is il-
lustrated in Fig. 2. The straight channel waveguides for l.5-
µm-wavelength light were made by a conventional ther-mal
diffusion of metallic Ti on the X face of the LN wafers along
the Y directlon. The metallic Ti strip lines for the waveguides
were formed on the LN wafer by a vacuum evaporation depo-
sition and a photolithography process. The width of the Ti strip
lines was changed from 4 to 7 µm while the thickness was kept
at 90 nm. Then, these wafers were heat treated at 980 ℃ for 20
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FIG. I . Schernatic diagram of the structure of the waveguide polarizer. The
extraordinary ray is guidcd in the waveguide (a), and ordinary ray leaks out
to the anisotropic crystal (b).
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FIG. 2. Fabrication process of the polarizer.
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h. The fabricated waveguide yielded a single-mode propaga-
tion for both TE and TM modes. At the next step, the Zn-doped
LN film was formed over one end of the LN substrates, con-
sisting of the Ti:LN waveguides, by a solid-liquid coexisting
liquid-phase-epitaxy (LPE) technique using a Li

2
O-V

2
O

5
 flux

system.6 The chemical composition of the flux was 50 mol %
Li

2
O, 40 mol % V

2
O

5
, and lO mol % Nb

2
O

5
. Into this flux,

ZnO (12.5 mol %) was added. The mixture was kept at 850℃
and melted, then the end part of the waveguide substrate was
dipped into it for 60 min. The length of the dipped area was 10
mm. By such a simple method, the 20-µm-thick Zn-doped LN
film grew epitaxially on the LN substrate. The refractive in-
dexes of the Zn-doped LN film were measured with a prism

coupler (Metricon PC-2000) at a wavelength of 0.633 ILm to
be 2.2930 and 2.2195 for ordinary and extraor-dinary rays,
respectively.

Figure 3 shows the top view and the cross section of the
optical waveguide with the Zn-doped LN overlayer. Both end
faces of the waveguide were polished for coupling to optical
fibers, and for observation of a near-field pattern of the optical
output from the waveguides. The observed output intensity
profile revealed that the state of extraordinary ray propagation
(TE mode) was multimode for the 6- and 7-µm-wide
waveguides, while it was single mode for 4- and 5-µm-wide
waveguides. On the other hand, for the ordinary ray propaga-
tion (TM mode), the output intensity was very weak, suggest-
ing a leak of this ray from the waveguide to the Zn-doped LN
film.

At last, the optical insertion loss and the extinction ratio
were measured using a polarization-maintaining fiber and a
single-mode fiber which were coupled to the input and the
output ends of the waveguide, respectively, as schematically
illustrated in Fig. 4. The linearly polarized light (wavelength 1
.55 pam) was inserted into the waveguide through the polar-
ization-maintaining fiber, and the direction of the polar-ization
was inclined to 0° (TE mode) and 90°(TM mode) from the
LN substrate surface. The optical output was intro-duced to an
optical power meter through the single-mode fiber. The ex-
tinction ratio was calculated as a ratio of the output power for
the TE mode to that for the TM mode. Figure 5 shows the
dependency of the optical loss and the extinction ratio on the
width of the waveguides. The high extinction ratio over 30 dB
was obtained for the waveguides with 4 and 5 µm width. The
total insertion loss for the TE mode, including the fiber cou-
pling losses, was 2.1 dB for the -5-µm-wide waveguide. The
insertion loss for the waveguide without the Zn-doped LN film
was similarly measured to be 2.0 dB. The results indicate that
the excess loss caused by the LPE film was less than 0.1 dB. In

FIG. 3 . Ti-diffused waveguide and polarizer. The surface is rough just above
the Ti-diffused waveguide. The size is 40 mm X 5 mm (a). Photograph of
cross-sectional view of the polarizers. The thlckness of the Zn-dopcd film is
larger on the Ti-diffused area (b).

FIG. 4. Schematic diagram of thc sctup to measure the insertion loss and the
extinction ratio of the polarizers.

FIG. 5. Insertlon loss and extinction ratio of~ the polarizers fabricated by
Zn-doped LPE film growth and by Zn-doped LPE film growth.



addition, the insertion loss and the extinction ratio for the 5-
µm-wide waveguide were measured by a cutback method to
be 2.0 and 32 dB, respec-tively. The propagation loss and the
coupling loss for the TE mode were calculated to be 0.2 dB/
cm and I .9 dB/2 faces, respectively.

In conclusion, the TE-mode pass waveguide polarizers
were installed on X-cut Ti:LiNbO

3
 waveguides by LPE growth

of a Zn-doped LN overlayer. The extinction ratio exceeded 34
dB and the total insertion loss was only 2.1 dB for the I .5 Ihm
wavelength light. Because wavelength depen-dencies of the
refractive indexes of the constituent materials are small, this
waveguide polarizer is expected to work sta-bly as a compo-
nent of the optoelectric waveguide devices throughout a wide

wavelength range for the fiber communi-cation systems. Fur-
ther, this fabrication technique of the po-larizer, using the LPE,
can be applied similarly to other LN wafer orientations.
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