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In fiber optic devices, the 250 to 400-µm diameter tight jacketed fibers are
sometimes jacketed additionally by loose tube-type materials. However, the
loose tube jacketed fibers fail possibly due to the shrinkage of the loose tubes,
if the tubes are not stabilized enough by preheat aging, etc. Although such
phenomena are empirically known, here when the loose tube shrinks, the
inner fiber is found to relax by being helically deformed. As a result, com-
mercial fibers could endure at least 1-1.5% longitudinal shrink without a
mechanical break, but exhibited excess optical propagation losses due to the
bending.        © 1998 Academic Press

1. INTRODUCTION

Engineering problems related to mechanical integrity in optical fiber devices
have been investigated to estimate and ensure the long-term reliability of the
devices during ordinary use. More severe demands from marine and terrestrial
fiber communication systems, and recently from satellite systems, have resulted in
the present highly reliable and stable states of optical fiber devices [1-4]. Standards
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for such devices are also established based on huge amounts of experimental data
from device and system manufacturers [5]. However, there is still the possibility
that unexpected failure might occur due mainly to a lack of information on
characteristics of the constituent device materials. Although the optical fibers
themselves have been investigated enough and have been systematically standard-
ized, the design requirements for the jacketing materials have not yet been
established, except for the materials used in undersea cables [6]. In fact, fiber
pigtails in the devices fail sometimes due to defects in jacketing materials, assem-
bling structures, handling, etc.

The problem of fiber extruding from tightly jacketed commercial fibers was
reported previously with respect to the significant difference in thermal deforma-
tion of the outer jackets, which is dependent on the type of material [2]. Here, the
failure in the loose tube jacketed fibers was investigated. The wavelike deformation
of the inner fibers due to the longitudinal shrinkage in the loose tubes was
empirically known, and the preaging of loose tubes at temperatures higher than
device operating temperatures is commonly performed to suppress the shrinkage in
the tubes during the service [7]. However, because the initial characteristics of the
loose tube materials possibly fluctuate depending on the manufacturing and
handling history, we consider that the failures could not be completely eliminated.
Therefore, we investigated again the failures due to the loose tube shrinkage.
Especially, the inner fibers were found to deform into a helix shape, not into a
simple wave shape, enduring over 10-15 mm shrinkage per 1m loose tube without
any fiber breaks.

2. FAILURE CASE STUDY

Figure 1 shows an example of the fiber deformation caused by longitudinal
shrinkage of the loose tube. The fiber was a 250-µm-diameter UV radiation
curable resin-coated single mode fiber, while the loose tube was a commercial FEP
(tetrafluoroethylene / hexafluoropropylene copolymer) tube having 500 µm inner
diameter and 900 µm outer diameter. In this case, because both terminals of the

    FIG. 1.   Typical failure observed in loose tube jacketed fibers: a fiber wavelike deformation caused
by longitudinal shrinkage of the loose tube. Outer and inner diameters of the loose tube are 900 and
500 µm, respectively. Outer diameter of the fiber is 250 µm.
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oose tube were tightly bonded to the optical devices such as optical connectors
with the inner fiber, thermally induced shrinkage in the loose tube induced the
wavelike deformation of the fiber.

 In order to investigate the relationship between the shrinkage length and the
deformation in the optical fibers, 14 samples consisting of 1-m-long FEP Ioose
tubes from multiple manufacturing lots with the 250-µm-diameter single mode
fibers terminated with conventional fiber connectors at both ends were prepared
and heated in an oven at 80ºC for 12 h. The loose tubes had been assembled
without any preaging treatments. The typical longitudinal shrinkage of the tube
was described in the catalog to be less than 1%. After the heat treatment, the
wavelength and waveheight of the deformed fibers were measured using an optical
projector to calculate the magnitude of the deformation. The waveheight was
measured to be almost 500 µm, suggesting that the radial shrinkage of the tubes
was negligibly small. Then, both the loose tube and the fiber were cut at the
position where the connector device was bonded, and the fiber length extruding
from the tube was measured to estimate the longitudinal shrink length of the tube.
The magnitude of the shrinkage was scattered from 3.5 to 12mm, indicating that
mechanical characteristics of the tubes fluctuated greatly.
 The experimental results are exhibited in Fig. 2 as open circles; in this figure, the
vertical axis denotes the measured loose tube shrinkage and the horizontal axis
denotes the wavelength of the deformed fibers averaged for more than 10 measure-
ments in each sample. Similar relationships calculated for possible fiber deforma-
tions into the helixlike and the simple wavelike are represented by closed circles
and triangles, respectively. The results indicated that due to the loose tube

    FIG. 2.    Relationship between the longitudinal shrinkage measured for the 1-m-long loose tube and
the wavelength measured for the deformed fibers after the heat treatment at 80ºC. Open circles denote
the experimental results. Closed circles and triangles denote the calculation results assuming the helical
deformation and wavy deformation of the fibers, respectively.
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shrinkage, the fibers deformed helically in the narrow space of the tube. Here, the
calculation was done by substituting the measured wavelength, L, of the deformed
fibers into the following equations. From a geometrical consideration, the length
for helical fibers, Ihelix’ is given by following the equation using the inner diameter,
D, of the loose tube; here D = 0.5mm:

Ihelix = [L2
 + (πD)2]1/2

Then, the shrinkage length of the loose tube was estimated simply by subtracting
the length of the loose tube from the total length of the helically deformed fibers.
Because the observed shrinkage of the tube was only 12mm in maximum for the
1-m-long tubes, here the total fiber length was calculated by Ihelix × (1000 / L) as
an approximation, and the tube length was fixed at 1000mm. On the other hand,
the length for wavelike deformed fibers, Iwave’ is given by the following equation
using the radius, R, of the deformed fibers and the center angle, θ, in radian for
the sectors with the radius R and the cord L/2:

 Iwave = 2Rθ.

The R was derived by the following equation using the measured wavelength L of
the deformed fibers; the inner diameter, D (= 0.5mm), of the loose tube; and the
outer diameter, d (= 0.25mm), of the fibers:

R = [L2 + 4(D - d)2]/[16(D - d)].

The shrinkage length of the loose tube corresponding to the deformed fibers was
similarly estimated using the total fiber length, Iwave× (1000 / L).

 The results indicated the fibers could deform helixlike in the loose tube and
accept larger longitudinal shrinkage in tubes, e.g., 1-1.5% in Fig. 2, without any
fiber breaks. On the other hand, the strength of the commercial fibers has been
significantly improved, and the mechanical criterion for residual strain has proven
to be 0.43% for 1-m-long fibers with the assumption of a predicted lifetime of 25
years, a failure probability of 1 × 10-5 per length, and fibers proof tested with 1%
strain [8]. The 0.43% strain corresponds to the 15mm bending radius. In this
regard, as a simple estimation, the maximum shrinkage length approved for the
1-m loose tube was calculated to be 20 mm by using Eq. (3) with R = 15 mm and
Eq. (1) with the derived L for R = 15 mm. Note that the above consideration is
with respect to only mechanical failure and the actual strain induced in the
helically deformed fiber is more complex. The effect of twisting was not considered
here, in spite of the fact that the strength of the twisted fibers was less than that
of simply bent fibers. Concerning a similar problem occurring in the coiling up
of slack fibers, Kiss recommended an assembly method to eliminate twisting in
fibers [9].
 At last, the optical propagation losses for the deformed fiber samples of Fig. 2
were evaluated using light with a wavelength of 1.55 µm. Figure 3 shows the
relationship between the loose tube shrinkage and the excess loss measured for the
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     FIG. 3.    Relationship between the loose tube shrinkage and the excess loss measured for the
samples of Fig. 2.

corresponding samples. The excess loss was simply calculated by subtracting the
initial loss value from the loss measured for deformed fibers after the heat
treatment. Although all fibers might not have failed mechanically, a significant
increase in propagation loss was detected for samples with the greatest tube
shrinkage. By cutting the loose tubes to remove the deformation in the fibers,
however, the excess losses were measured to be almost completely eliminated,
indicating that observed losses were due to the fiber bending.

Figure 4 is a replot of Fig. 3, showing the relationship between the radius R of
the deformed fibers, which was calculated using Eq. (3), and the normalized excess
loss. Here, the measured excess losses were reduced per unit wind for each fiber
coiled with the radius R. The numbers of coils appearing in the total fiber length,
as a sum of the deformation with the wavelength L, were estimated by comparing
the circumference length for the circle having radius R with the partial arc length
Ihelix. by Eq. (1) within the gap L. In Fig. 4, open circles and error bars denote
average and ±σ, respectively, and σ was a standard deviation for R correspond-
ing to É– for the measured L values. The closed circles show other experimental
results obtained for 1-m-long fibers coiled up around mandrels having various radii
(mandrel test [10]). The results for the deformed fibers (open circles) seemed to be
like those given by the mandrel test, although the data were largely scattered. The
larger deterioration in optical propagation losses for the deformed fibers is
considered to be due to the influence of the fiber bent with a smaller R, which
appeared possibly at some positions in the deformed fibers, and of the twisting
caused by the helical deformation.
 As a result, even though the fibers might not break until approximately 2% of
the longitudinal shrinkage in the 1-m-long loose tube, in order to prevent a large
increase in optical propagation losses, the loose tube shrinkage should be com-
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FIG. 4.    Replot of Fig. 3 as a relationship between the radius R of the deformed fibers and the
normalized excess loss. Open circles denote the data of Fig. 3, and closed circles denote the results of
the mandrel test performed using other fiber samples.

pletely eliminated. In this regard, we also recommend simpler component designs
excluding the loose tube jacketing of the fibers, and such designs have been
commonly adopted. However, if the loose tube jacketing is necessary, the tubes
should be divided into multiple elements so as not to deform the inner fibers by the
shrinkage in the tubes. Although the preaging of the tubes seems to be effective in
reducing the magnitude of the shrinkage, we consider that such treatment could
not exclude completely the failure for the reason described in the following section.

3. EVALUATION OF LOOSE TUBE CHARACTERISTICS

 As loose tubes, hytrel (polyester) and fluorocarbons, such as FEP and PTFE
(polytetrafluoroethylene), seem to be commonly used. In our experience, the hytrel
loose tubes were soft and reliably applied to devices operated under ordinary office
conditions [4]. However, for critical devices used under a severe environment,
fluorocarbon tubes are recommended. In our experience, for instance, after 1000
heat cycles between -40 and 100ºC for devices with the hytrel loose tube jacketed
fibers, the tubes became harder and stuck to the inner fiber surface. Fortunately,
because only 10-cm tubes had been installed at the fiber ports of the tested devices,
the observed deterioration in the loose tube did not cause any damage to the
optical characteristics of the devices. Such thermal deterioration in the hytrel
jacketing material could be predicted from the fact that the glass transition
temperature (Tg) of the material was only approximately 50ºC and changed largely
depending on the environmental conditions, as previously reported [11].
 Concerning the fluorocarbon tubes, too, there is a possibility that their mechani-
cal characteristics are influenced by problems in the manufacturing, handling
processes during the device assembly, etc. Figures 5a and 6a show results of
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     FIG. 5.    Results of TMA tests for the 10-cm-long FEP loose tubes (a) before the preaging and (b)
after the preaging at 100ºC. The Tg is measured at 85.04ºC. for (a) and at 85.85ºC. for (b).

     FIG. 6.    Results of TMA tests for the other 10-cm-long FEP loose tubes (a) before the preaging and
(b) after the preaging at 100ºC.
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thermomechanical analyses (TMA) for two FEP tubes supplied from two different
fabrication batches. The 10-cm-long sample was suspended with a 10-g weight in an
oven (N2 atmosphere), while the temperature was increased from the room
temperature to 230ºC at 10 K/min. The change in the sample length was recorded
as a function of the temperature. In the vertical axes of the figures, the positive
and negative directions denote elongation and shrinkage of the sample, respec-
tively. As is seen, the behavior in thermal deformation was very different depend-
ing on the sample. The sample in Fig. 6a shrunk considerably, even though the
tensile force was applied to the sample by the weight. Although reasons for the
observed difference in the thermomechanical behavior are not known, such analy-
ses should be useful in rejecting undesirable materials and fabrication lots of the
processed tube before assembly, at least.
 Differential scanning calorimetry (DSC) analyses were also performed for the
same FEP loose tube samples. The melting temperatures (Tm) were measured for
the samples of Figs. 5a and 6a and found to be 267.0 and 266.1ºCé, respectively.
The detected slight difference in Tm indicated a possible fluctuation in the mate-
rial characteristics, because the Tm measured for the samples from the same lot
was similar within 0.1ºC.
 Figures 5b and 6b show the TMA results for the preaged tube samples. The
preaging was carried out at 100ºC for 5 h. Concerning the sample of Fig. 5, the
magnitude of elongation at lower temperatures (below approximately 120ºC)in-
creased while the Tg was kept almost the same at 85ºC. The origin of the increased
elongation was considered to be the shrinkage induced by the preaging of the tube
at 100’C before the TMA test. Similar results were shown for the sample of Fig. 6,
although the stability of Tg could not be checked for this sample because of its
intrinsic anomaly in thermomechanical characteristics. Melting temperatures (Tm)
were measured by DSC for the samples of Figs. 5b and 6b to be 267.74 and
265.5ºC, respectively, and changed from the initial values, suggesting that the
material characteristics were modified by the preaging.
 A supplied PTFE tube was also evaluated and shown to have Tm at 328Åé by
DSC analysis. The result from the TMA test was also ideal, as shown in Fig. 7,

     FIG. 7.    Results of TMA tests for the 10-cm-long PTFE loose tube..
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without a certain Tg Within ordinary temperatures for the optical device operation.
Even after 1000 heat cycles between - 40 and 100ºC, no significant deterioration in
mechanical dimension and color was observed for the PTFE loose tube. The PTEF
is considered to be a promising material for the loose tubes, which could be used
under severe heat conditions.

4. CONCLUSIONS

The mechanical failure in optical fiber devices induced by the thermal shrinkage
of the loose tube materials was analyzed. Although the phenomena have been
empirically known, we revealed here that the optical fibers deformed helixlike in
the loose tube due to longitudinal shrinkage of tubes. As the result of such a
flexible deformation, the fibers might endure approximately 2% in the shrinkage
without any fiber breaks (1-m-long fibers), although a large deterioration in optical
propagation appeared due to fiber bending. In order to know the thermal stability
of the loose tube materials, some commercial tubes were evaluated by TMA and
DSC methods, and fluctuation in the mechanical characteristics, possibly due to
the material and handling history, was shown. From the viewpoint of long-term
reliability of the devices, the results recommended the assembly designs without
loose tube jacketing, which are commonly adopted, rather than designs having
fibers completely jacketed with loose tubes.
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