
SUMMARY This paper presents a proposal for a novel integrated tun-
able coupler device called programmable coupler ladder, based on Titanium 
diffused lithium niobate waveguide and Y-junction reflector. Unlike the tra-
ditional serial to parallel converter, the coupler ladder sorts the output bits 
in the time axis using a built-in delay waveguide. With a proper control 
signal it can perform signal processing at the bit level. It also can gener-
ate coherent multi-channel outputs with theoretically arbitrary amplitude 
and phase from continuous input light source. Its application in optical mi-
crowave beam forming is briefly described. The key component, built-in 
delay line based on Y-junction reflector, has been experimentally verified 
via a loop resonator structure. 1 dB loss is found for each Y-junction re-
flector, which enables a practicai coupler ladder. The loop itself is also an 
important device for optical signal processing. 
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1.  Introduction 

The 1 to N splitter is a key device in many optical signal 
processing applications such as label recognition of pho-
tonic packet switching networks, [1] data rate conversion for 
large-capacity storage networks, [2] all-optical register, [3] 
and optical RF beam forming [4]. Different splitters have 
been created using surface-emitting planar lightwave cir-
cuits, [1], [2] acousto-optic modulator, [3] or a fiber-based 
technique [4]. However, few of them can be easily re-
programmed or fine-tuned to meet the dynamic variation of 
the networks. 

In this paper, we propose a novel, compact, multi-
functional signal-processing device composed of a group of 
tunable couplers on one single lithium niobate (LN) chip. 
The couplers are arranged in parallel, similar to the steps in 
a ladder, so that we refer to the device as a coupler ladder. 
The couplers transmit part of the light guided in a mean-
dering waveguide, which acts as the built-in delay line. By 
applying voltage to electrodes at the coupler and along the 
meandering waveguide, the output amplitude and phase can 
be tuned for each output channel. Thus the programmable 
property of the coupler ladder can be achieved through an 

Manuscript received July 28, 2004. 
Manuscript revised October 18, 2004. 
†The authors are with the Dept. of Electrical and Computer 

Engineering, University of California, San Diego, La Jolla, CA 
92093, USA. 

††The authors are wlth National Institute of Information and 
Communications Technology, Koganei-shi, 184-8795 Japan. 

†††The author is with New Technology Laboratories, Sumitomo 
Osaka Cement Co. Ltd., Funabashi-shi, 274-8601 Japan. 

a) E-mail: j26chen@ucsd.edu 
DOI:10.1093/ietele/e88-c.3.379 

electric controlling circuit. Furthermore, the outputs chan-
nels are coherent with each other when a narrow band con-
tinuous wave (CW) laser is used as the source. 

The meandering built-in delay line is identified as the 
key element in realizing the coupler ladder. Similar scheme 
has been reported to fold the long waveguide of the acousto-
optic tunable filter so that the wafer can be downsized [5]. 
We extended the scheme to coupler ladder and experimen-
tally verified it via a loop resonator structure, which consists 
of two Y-junction reflectors and is coupled with a straight-
through waveguide. By measuring and analyzing the trans-
mission of the loop, we have approximately measured the 
internal loss due to the Y-junction reflector. 

The paper is organized as follows. First, the device 
structure of the coupler ladder is introduced. Second, the 
main functions and possible applications are briefly de-
scribed. Third, the preliminary results of the loop resonator 
is presented, followed by a conclusion. 

2.  Structure of the Coupler Ladder 

Figure 1 schematically depicts the structure of the pro-
grammable coupler ladder. Z-cut LN is chosen as the sub-
strate material, due to its well-established fabrication tech-
nology. A meandering Titanium (Ti) diffused waveguide 
goes back and forth between the left and right facet of the 
LN substrate. Each turning point of the meandering wave-

Fig. 1 A schematic diagram of the programmable coupler ladder. M: 
mirror; K: couplng coefficient; φ: phase shifting electrode. There is ac-
tually no coupler for the final output channel. KN is namely equal to 1 to 
represent an always-on state. The electrodes for controlling the coupling 
coefficient are not drawn explicitly. 
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guide at the facet forms a Y-junction. The Y-junction con-
sists of two waveguide branches merged together into one 
relatively wider multimode interference (MMI) branch. A 
metal or dielectric high reflection mirror is coated at the out-
put of the MMI branch. With proper geometric design of the 
MMI section, the Y-junction can guide most of the incident 
light from one branch to the other, analogous to a mirror 
reflecting a light beam from one direction to another in the 
free space. 

For each left-to-right section of the meandering wave-
guide, a coupling waveguide can be branched out from a 
certain point, so that a series of directional couplers can be 
made in parallel to each other from the bottom to the top. In 
Fig. l, K1, K2, K3 ... KN represent the couplers. The facet 
at the termination of each coupling waveguide is optically 
transmittive so as to couple light to the outside. The number 
of outputs, N, can be optimized subject to the limitation of 
the propagation loss. 

The outputs, from I to N – 1, are equal to each other. 
The final one, the Nth in Fig. 1, is a special one as it is the 
output of the meandering waveguide itself. There is actually 
no coupler for this channel. KN is namely taken to be unity,, 
representing an always-on state. This output can also be 
located at the opposite facet, depending on the applications. 

Within the coupler ladder, the electrodes are used for 
two purposes: phase modulation and coupling coefficient 
modulation. Due to the excellent electro-optic property of 
LN, it is now routine to deposit the phase shifting electrodes 
along the meandering waveguide. In Fig. 1, we use φ1 , φ2, 
... φN to represent the phase shifting electrodes. Simi-
larly, an electrically-controlled coupler or switch is also a 
well-established technology for Ti-diffused LN waveguide 
device, i.e., the coupling coefficients of K1, K2, K3 ... KN–1

can be tuned from 0 to 1 with proper applied voltage to the 
control electrodes [6], [7]. 

By tuning both the phase and the coupling coefficient, 
the output of every coupler can have arbitrary amplitude and 
phase modulations. The electro-optic response speed of LN 
is up to several tens of GHz, especially with traveling-wave 
type electrode [6]. Thus, high-speed tunability is achievable. 
A smart control circuit can be employed to generate suitable 
control signals for the electrodes. In this context, the device 
can function as a programmable coupler ladder. 

3.  The Basic Functions and Applications 

The most straightforward function of the coupler ladder is 
to split the input signal into N channels, achieving serial-
to-parallel conversion similar to the traditional 1 x N power 
splitter. However, this new device has a unique advantage 
over a traditional splitter; every output inherently has a rel-
ative delay to the other outputs. The relative delay time is 
determined by the length of the waveguide between adjacent 
couplers along the meandering waveguide. 

Figure 2 depicts the simplified diagram for the pulse 
propagation and alignment. N is set to 4 for convenience. It 
is interesting to note that if the built-in delay time correlates 

Fig. 2 Coupler ladder for pulse alignment after splitting. 

Fig. 3 Bit selection by different controt words. 

to the transmission bit rate then the output pulses will line 
up in the time axis. This is useful for signal processing ap-
plications such as label recognition in the packet switching 
networks . 

More splitting functions can be obtained with the help 
of an electrical control signal. As shown in Fig. 3, the input 
pulse can be sorted using the built-in delay. Assuming the 
control of the coupling coefficient Ki (i = 1, 2, 3, 4) can be 
written under a synchronized clock, a different bit pattern 
can be acquired by applying different control words for Ki. 
For example, for K1 = K2 = K3 = K4 = 1 , all the bits 
would be fanned out. For K1 = K3 = 0 and K2 = K4 = 1 , 
only pulse 1 and pulse 3 would be swept out. This enables 
the device to perform signal processing at the bit level. If 
only one channel is allowed to be coupled out, the device 
becomes a programmable router. 

By reversing the input and output ports, the device is 
also able to operate as a parallel-to-serial convertor with 
the help of a synchronization clock. Due to the transmis-
sion characteristic of the directional coupler, an advantage 
of this device is that when one channel (say, the 2nd cou-
pler) is open for the pulse to be coupled in, the undesired 
pulse flow coming from the upper channels (say, the 3rd and 
4th) will be transmitted to the dummy end of the coupler 
of channel 2, so that the interference between the pulses 
will be avoided. With proper waveguide design, the light 
reaching the dummy end will radiate out to the substrate, 
without causing interference to the transmission waveguide. 
Figure 4 gives a simple illustration of this truncation phe-
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Fig. 4 Diagram of pulse adding and blocking. 

Fig. 5 (a) Coupler ladder functioning as an opticat phased array. (b) 

Converting optical phased array to RF phased array. 

nomenon. The truncation will not affect the normal pulses, 
which are still awaiting in the upper delay line. 

Besides the applications to pulsed processing. the cou-
pler ladder can also perform continuous lightwave process-
ing by adjusting the amplitude and phase of each channel. 
Figure 5(a) illustrates how the coupler ladder generates the 
outputs with certain relations in phase and amplitude with 
each other. A narrow linewidth cw laser at (ω1 is used as 
the light source. For simplicity, we assume the output am-
plitudes are the same and are normalized to 1 by selecting 
proper values of Ki, so that only phases are under consid-
eration. Since only the relative phase between channels is 

important, we assume the phase output of first channel to be 
0 as a reference. By tuning the phase shifter, the device gen-
erates a phase difference of A｢ between every two adjacent 
channels. 

A possible application for this coherent phased array is 
optical radio frequency (RF) beam forming. For this appli-
cation a second coupler ladder at an output optical frequency 
of ω2 and identical phases for every analogous channel is 
used. We can use a combiner array and a detector array to 
convert the signals from optical to RF domain. The output 
RF signals, which are the beat tone of ω1 and ω2, will have 
the same phase difference ∆φ between every two adjacent 
channels. The RF generation process is briefly described 
in Fig. 5(b). The identical phase of (ω2 is set to be 0 since 
only the RF phase difference is of concern. The beat tone of 
two laser beams in the detector is governed by the equation 
below: 

The DC terms and high order frequency terms are ne-
glected in the derivation of (1). This method can thus be 
utilized to adjust the RF phased array signal by fine-tuning 
the optical phase. 

A further thinking to improve the optical phase sta-
bility during the transmission is to alternate the mirrors in 
Fig. 1 with some bandpass filters, which reject ω1 but allow 
ω2 to pass through, so that ω2 can be fed through M0 and 
mixed with ω1 in the same coupler ladder chip. By this way, 
the combiner array in Fig. 5(b) is neglected and the phase 
scrambling can be reduced. The system will be more con-
cise. 

4.   The Loop Structure to Verify Y-Junction Reflector

The techniques of Ti-diffused waveguide fabrication, 
electro-optic phase shifting, and high speed coupling coeffi-
cient tuning have been studied and are quite well established 
[6], [7]. The key enabling technology for the coupler ladder 
is the delay line based on Y-junction reflector. Some of the 
preliminary results of the Y-junction reflector have been re-
ported previously [8]. More detailed technical information 
about the junction is provided in the following. 

A loop structure shown as Fig.6(a) was made at Sum-
itomo Osaka Cement Company. The device is composed 
of one straight-through waveguide coupled to a loop struc-
ture, which consists of two Y-junction reflectors connected 
to two waveguide branches. The metal-coated high reflec-
tion mirror can guide most of the light from one arm to the 
other arm. The coating, 120 nm thick Au with 6 nm thick Cr 
between the facet and Au, is applied only to the end facet 
of the Y-junction and not to the straight-through waveguide. 
For each end, a small piece of LN is glued to the top to sup-
port the coating of waveguide facet, which can be seen in the 
picture of Fig.6(b). A magnified top view to the waveguide 
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Fig. 6 (a) Structure ot the loop resonator (not to scale). (b) Top and side 

views ot the loop device. (c) Top view of part of the waveguide. 

is given partly in Fig.6(c). The waveguide width is about 
6µm. The splitting angle of Y-junction is 7˚ and the MMI 
section length is 56µm. These fine-tuned parameters make 
the Y-junction achieve low loss and high reflectivity. 

Input light is coupled to the straight waveguide and 
then into the loop. The coupling coefficient is determined by 
1) the effective modal index of the waveguide, 2) the length 
of the coupling region, and 3) the gap between the straight-
through waveguide and the adjacent interconnecting wave-
guide of the loop. For our current devices, the gap varies 
from ~3.7 to ~4.2µm to test different coupling coefficients; 
the length of the straight-through waveguide is ~14mm; the 
separation between the upper and the lower arm of the Y-
junction is around 100µm. Therefore one round trip in the 
loop is about 28mm. The chip shown in Fig.6(b) has an 
area of 14 mm x 1.8 mm. 

To understand the behavior of the loop, the device is 
theoretically considered as one lossless coupler connected 
to the feedback waveguide [9], [10]. Define the loop round 

Fig. 7 Fiber-to-fiber transmission versus wavelength measurement 

(dots) ot the sample and curve fitting (solid line). 

trip phase as 

where n is the waveguide refractive index, L is the effec-
tive waveguide length, and λ is the optical wavelength. The 
transfer function is given by 

where Eout and Ein are the complex amplitudes of the elec-
tric fields for the input and output of the straight-through 
waveguide, respectively, as depicted in Fig.6(a). ρ is re-
lated to the power splitting ratio κ by ρ = 1–κ . The 
internal loss of one pass around the loop, which is given by 
–10 log10 γ2 in dB, has been explicitly included in the trans-
fer function. 

The preliminary transmission measurements at differ-
ent wavelengths, ranging from 1.5545µm to 1.5550µm by 
a tunable laser polarized in TM mode, are done to several 
devices with different coupling gaps. Figure 7 shows part 
of the transmission amplitude obtained from a device with 
4.1 µm coupling gap. To fit the experiment results, the fiber-
to-fiber transmission is given by 

where Γ describes the loss caused by the coupling losses be-
tween the fiber and waveguide and also by the propagation 
loss of the straight-through waveguide. 

The fitting result is shown in Table 1 . The internal loss 
is mainly attributed to the Y-junction reflector and the wave-
guide propagation loss. 

With γ=0.60, the internal loss is estimated at 4.4 dB for 
the loop. It is hard to decouple the waveguide propagation 
loss (including the possible bending loss due to the imper-
fect coupler) and Y-junction reflection loss. If we assume 

IEICE TRANS. ELECTRON., VOL.E88–C, NO.3 MARCH 2005 382



Table1 Fitting parameters for the fiber-to-fiber transmission. 

an average waveguide propagation loss of 0.50dB/cm and 
a coupler bending loss of 0.50dB per bending [6], the to-
tal propagation loss due to the 2.8 cm long round trip loop 
waveguide is about 2.4 dB. The rest of the loss is due to the 
Y-junction reflection, which is 1.0 dB per Y-junction. The 
roughness of facet and coating quality are the main contri-
butions to the reflection loss. 

From the preliminary data obtained from the loop 
transmission, we note that the propagation loss can limit the 
channel number of the coupler ladder. When the total inser-
tion loss is restricted to around 10 dB, N=4 would be practi-
cal for the current situation. The loss can be reduced through 
the improvement of design and fabrication technique, or 
through the use of an optical pumped Erbium doped LN to 
compensate the loss with gain, which, of course, requires 
more research in the future [11]. 

5.  Conclusions 

In summary, we have proposed a new method to realize a 
multi-function programmable coupler ladder, based on the 
key technology of Y-junction reflection. Its applications 
to pulse transmission and continuous wave processing have 
been discussed. A loop structure is experimentally demon-
strated to validate that the Y-junction can have a loss as low 
as 1 dB. It is possible to build a 4 channel coupler ladder 
with the insertion loss around 10 dB. 
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